Point defect interactions and structural stability of compounds
نویسنده
چکیده
Theoretical studies of point defect interactions and structural stability of compounds have been performed using density functional theory. The defect-related properties, such as activation energy of diffusion, electronic and magnetic structure of selected materials have been studied. The major part of the present work is devoted to a very important material for semiconductor industry, GaAs. The formation energies of intrinsic point defects and the solution energies of 3d transitions in GaAs have been calculated from first principles. Based on the calculated energies, we analysed the site preference of defects in the crystal. The tendency of defects to form clusters has been investigated for the intrinsic defects as well as for impurities in GaAs. The magnetic moment of 3d impurities has been calculated as a function of the chemical environment. The possibility of increasing the Curie temperature in (Ga,Mn)As by co-doping it with Cr impurities has been examined on the basis of calculated total energy difference between the disordered local moment and the ferromagnetically ordered spin configurations. We found that, in order to reach the highest critical temperature, GaAs should be separately doped with either Cr or Mn impurities. Also, we have shown that diffusion barrier of interstitial Mn depends on the charge state of this impurity in (Ga, Mn)As. The formation of defect complexes between interstitial and substitutional Mn atoms, and their influence on the value of diffusion barrier for interstitial Mn, has been studied. The pair interactions energies between interstitial oxygen atoms in hcp Zr, Hf and Ti have been calculated using first principles. Based on the calculated energies, the oxygen ordering structures in IVB transition metal solid solutions have been explained. A prediction of nitrogen ordering in Hf-N solid solution has been made. The thermodynamic description of intermetallic compounds in the Zr-Sn binary system has been obtained. The conclusion has been made that Zr substitution on the Sn sites takes place in the Zr4Sn phase, which accounts for the unusual stoichiometry of is Cr th The influence of pressure on the phase stability in the Fe-Si system has been investigated. We have found instability of the hcp Fe 3Si structure type compound. 0.9Si0.1 random alloy with respect to the decomposition onto the Si-poor hcp Fe alloy and the B2 FeSi under high pressure. The tendency of this decomposition becomes stronger with increasing the applied pressure.
منابع مشابه
Prediction of boiling point and water solubility of crude oil hydrocarbons using sub-structural molecular fragments method
The quantitative structure–property relationship (QSPR) method is used to develop the correlation between structures of crude oil hydrocarbons (80 compounds) and their boiling point and water solubility. Sub-structural molecular fragments (SMF) calculated from structure alone were used to represent molecular structures. A subset of the calculated fragments selected using stepwise regression (fo...
متن کاملSolvent effect investigation on the Conformational behaviors of 1-fluoro-N, N-dimethylmethanamine and analogs containing P, As atoms
NBO analysis, hybrid density functional theory (B3LYP/6-311+G**) based methods were used to study the anomeric effects (AE), Stereoelectronic interactions, dipole-dipole interactions on the conformational properties of 1-Fluoro-N, N-dimethylmethanamine (1) and phosphorus (2) and arsenic (3) analogues.Moreover, relationships between stability of the anti-conformations of 1-Fluoro-N, N-dimethylme...
متن کاملAb initio Study and NBO Analysis of Conformational Properties of 2-Substituted Cyclohexane-1,3-diones and its Analogues Containing S and Se Atoms
NBO analysis, hybrid density functional theory (B3LYP/6-311+G**) and ab initio molecular orbital (HF/6-311+G**) based methods were used to study the anomeric effects (AE), electrostatic interactions, dipole-dipole interactions and steric repulsion effects on the conformational properties of 2-methoxy- (1), 2-methylthio- (2), 2-methylseleno- (3), 2-fluoro- (4), 2-chloro- (5) and 2-bromocyclohexa...
متن کاملAb initio Study and NBO Analysis of Conformational Properties of 2-Substituted Cyclohexane-1,3-diones and its Analogues Containing S and Se Atoms
NBO analysis, hybrid density functional theory (B3LYP/6-311+G**) and ab initio molecular orbital (HF/6-311+G**) based methods were used to study the anomeric effects (AE), electrostatic interactions, dipole-dipole interactions and steric repulsion effects on the conformational properties of 2-methoxy- (1), 2-methylthio- (2), 2-methylseleno- (3), 2-fluoro- (4), 2-chloro- (5) and 2-bromocyclohexa...
متن کاملPyDII: A python framework for computing equilibrium intrinsic point defect concentrations and extrinsic solute site preferences in intermetallic compounds
Point defects play an important role in determining the structural stability and mechanical behavior of intermetallic compounds. To help quantitatively understand the point defect properties in these compounds, we developed PyDII, a Python program that performs thermodynamic calculations of equilibrium intrinsic point defect concentrations and extrinsic solute site preferences in intermetallics...
متن کاملA Computational Study on the Stability of Dapdiamide D Conformers
The conformational analysis of the organic compounds specially the biologically active natural products has attracted the consideration of different research groups. Therefore, in the present study the MP2/6-311+g(d,p)//B3LYP/6-311+g(d,p) level of theory was used to study the conformations of dapdiamide D. The identity of interactions in selected conformers was studied using atom in molecule ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007